
J Stat Phys (2009) 134: 27–51
DOI 10.1007/s10955-008-9662-4

Harnack Inequalities and Discrete–Continuous Error
Estimates for a Chain of Atoms with Two-Body
Interactions

R. Benguria · J. Dolbeault · R. Monneau

Received: 28 March 2008 / Accepted: 3 December 2008 / Published online: 18 December 2008
© Springer Science+Business Media, LLC 2008

Abstract We consider deformations in R
3 of an infinite linear chain of atoms where each

atom interacts with all others through a two-body potential. We compute the effect of an
external force applied to the chain. At equilibrium, the positions of the particles satisfy an
Euler–Lagrange equation. For large classes of potentials, we prove that every solution is
well approximated by the solution of a continuous model when applied forces and displace-
ments of the atoms are small. We establish an error estimate between the discrete and the
continuous solution based on a Harnack lemma of independent interest. Finally we apply
our results to some Lennard-Jones potentials.

Keywords Two-body interactions · Nonlinear elasticity · Discrete–continuous · Error
estimates · Cauchy-Born rule · Harnack inequality · Thermodynamic limit

1 Introduction

In this paper, we are interested in the elastic behavior of a chain of atoms with two-body
interactions. We consider in R

3 and more generally in R
d , d ≥ 1, deformations of an infinite

chain of atoms which are initially aligned with constant inter-atomic spacing. It is naturally
expected that for smooth microscopic deformations, the macroscopic effective behaviour of
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this long chain of atoms is well described by a suitable one-dimensional nonlinear elasticity
model. On the contrary, when the microscopic forces are large enough, another regime can
appear. It is known as the “fracture regime” (see for instance [32]).

The Cauchy-Born rule states that, when submitted to a small strain, the positions of the
atoms follow the displacement of the material at macroscopic level. Our main result, see
Theorem 1, is that the Cauchy-Born rule applies, up to a small error that we estimate in
terms of the two-body potential of interaction.

From a mathematical point of view, the key tool is an estimate of Harnack type, which
constitutes our second main result. This estimate is of its own interest for the understanding
of thermodynamical limits, which correspond here to the case when the number of atoms in
the chain per unit length tends to infinity.

1.1 Setting of the Problem

Denote by V0 the two-body potential as a function of the distance between the atoms, and
define

V (L) = V0(|L|) for every L ∈ R
d .

For any vector L ∈ R
d , we define the energy per atom of the perfect lattice {kL}k∈Z by

W(L) = W0(|L|) where W0(r) =
∑

k∈N\{0}
V0(|k|r).

By perfect lattice, we mean a lattice for which, for some L∗ ∈ R
d , X∗

k = kL∗ for any k ∈ Z.
Since it is one-dimensional, we shall also call it a perfect chain of atoms. We assume that
the two-body potential V0 decays sufficiently fast to zero at infinity in order that the series
converges.

The Macroscopic Description. Let us now consider a map � : R �−→ R
d satisfying the

following macroscopic “linear + periodic” condition

�(x + k) = �(x) + kL0 for any k ∈ Z, x ∈ R, (1.1)

for some given vector L0 ∈ R
d . This periodicity condition provides us with some suitable

compactness properties, which simplify the presentation and the proof of the results. We
are interested in the following macroscopic equation of the equilibrium of the material in
nonlinear elasticity

(∇W(�′)
)′ = f on R, (1.2)

for some force f : R → R
d which is 1-periodic,

f (x + k) = f (x) for any k ∈ Z, x ∈ R,

and satisfies the compatibility assumption

∫

R/Z

f dx = 0.
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The Microscopic Description. The heuristic idea is that the sequence (�(kε))k∈Z is a good
approximation of the positions Xε

k of the atoms of the chain, with interdistances of the order
of ε, small. After the rescaling

Xk = 1

ε
Xε

k,

the positions of the atoms of the chain are described by the map

X : Z → R
d ,

k �−→ Xk.

We introduce the formal, infinite energy

E(X) = 1

2

∑

j,k∈Z,
j 	=k

V (Xj − Xk) +
∑

j∈Z

Xj · fj , (1.3)

where each fk ∈ R
d represents the force acting on the atom at position Xk . Although the

energy is not well-defined, the Euler–Lagrange equation makes sense under suitable as-
sumptions on the two-body potential V and on the lattice X. We get

fj +
∑

k∈Z\{j }
∇V (Xj − Xk) = 0 for all j ∈ Z. (1.4)

We now consider any integer Nε large enough, assume that ε = 1/Nε , and require that the
positions of the atoms satisfy the following microscopic “linear + periodic” condition

Xk+Nεj = Xk + NεjL0 for any j, k ∈ Z. (1.5)

We shall assume that the force acting on the kth atom is given by

fk =
∫ ε(k+ 1

2 )

ε(k− 1
2 )

f (x) dx for any k ∈ Z, (1.6)

which satisfies in particular the microscopic periodicity condition

fk+Nεj = fk for any j, k ∈ Z

and the compatibility condition

Nε∑

i=1

fi = 0.

Remark that because of the periodicity conditions, one can easily define an energy per pe-
riod, summing in (1.3) only for k = 1, . . . ,Nε and still with j ∈ Z. This energy would be
finite, but, at formal level, give rise to the same Euler–Lagrange equations.

Our goal is to give an error estimate between the interdistance of the atoms Xk+1 − Xk

corresponding to (1.4)–(1.5) and the macroscopic deformation �′(kε) of the continuous
solution to the equations of nonlinear elasticity, (1.1)–(1.2). To this end we need some reg-
ularity and decay properties of the potentials.
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Assumption A1

W0 ∈ C3(0,+∞), V0 ∈ C2 ∩ W
3,∞
loc (0,+∞),

and for some p > 1, we assume that

sup
r≥1

rp
[|V0(r) + r|V ′

0(r)| + r2|V ′′
0 (r)| + r3|V ′′′

0 (r)|] < ∞.

1.2 Invertibility Assumptions

Invertibility Assumption at Macroscopic Level. First we assume that there exists L∗ ∈ R
d

with L∗ 	= 0, such that

Aij := ∂2W

∂Li∂Lj
(L∗) for any i, j = 1, 2, . . . , d

satisfies the following non-degeneracy assumption.

Assumption A2

The matrix A = (Aij ) is invertible.

Let us remark that by construction we have for the potential W0:

W(L) = W0(|L|) for any L ∈ R
d .

In particular, this implies that for d ≥ 2

A = W ′′
0 (|L∗|) L∗

|L∗| ⊗ L∗

|L∗| + W ′
0(|L∗|)
|L∗|

(
Id − L∗

|L∗| ⊗ L∗

|L∗|
)

,

while for d = 1, we only have

A = W ′′
0 (|L∗|).

Invertibility Assumption at Microscopic Level. To establish the stability of the lattice gen-
erated by the vector L∗, we consider the formal Hessian of the energy, which for X∗

k = kL∗
is defined by

E′′(X∗) · (Y,Y ) :=
∑

i∈Z

Yi · (B ∗ Y )i,

with

(B ∗ Y )i :=
∑

j∈Z

Bi−j · Yj where Bl =
{∑

k∈Z\{0} H
∗
k , if l = 0,

−H ∗
l , if l 	= 0,

(1.7)

and

H ∗
k := D2V (kL∗). (1.8)

By construction, we see that Y = (Yk)k∈Z with Yk = Y0 for any k ∈ Z, are in the kernel of B ,
which is natural because of the invariance under translations of the problem. Let us call E0
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the energy E in the special case of zero forces, fk = 0 for any k ∈ Z, and set

(
E′

0(X)
)
j
=

∑

k∈Z\{j }
∇V (Xj − Xk).

Let X∗ = (kL∗)k∈Z be a perfect lattice. We see that for any M ∈ R
d×d , the lattice (Id +

tM)X∗ is also a perfect lattice, and then satisfies the equation of equilibrium (1.4) with zero
forces:

E′
0

(
(Id + tM)X∗) = 0.

Here by MX∗, we denote the lattice made of the points kML∗, k ∈ Z. Differentiating the
equation with respect to t at t = 0, we get

E′′
0 (X∗) · (MX) = 0,

which gives

B ∗ (MX∗) = 0.

We shall assume that the kernel of B is generated by the image of X∗ by all translations
and linear transforms based as above on a matrix in R

d × R
d . More precisely, we make the

following invertibility/stability-type assumption:

Assumption A3 For B defined in (1.7)–(1.8) for the perfect lattice X∗ = (kL∗)k∈Z, there
exists a positive constant C such that

(|Yk+1 + Yk−1 − 2Yk| ≤ C and B ∗ Y = 0
)

=⇒ Y = MX∗ + b for some M ∈ R
d×d , b ∈ R

d .

If there was another element Y ∗ of this type in the kernel of B , this would mean that there
is a deformation of the crystal (different from the above transforms) which does not change
the energy up to the second order. In other words, the crystal would then have a possible
instability in the direction Y ∗. The true instability property (or possibly the stability) of the
crystal should then be studied by the mean of an analysis of the higher order terms in the
expansion of the energy.

1.3 Main Results

For a given crystal lattice X, we can define its local distance to the perfect lattice X∗
k = kL∗

by

Dk(X,L∗) := sup
e∈Q1

|Xk+e − Xk − eL∗|,

where for n ∈ N \ {0} we set the box

Qn := {e ∈ Z : |e| ≤ n} .

Theorem 1 (Discrete–continuous error estimate) Assume that (A1)–(A2)–(A3) hold and
that f is bounded, periodic. There exists ε0 > 0, such that, if

sup
x∈R

|f (x)| ≤ ε0, |L0 − L∗| ≤ ε0, sup
k∈Z

Dk(X,L∗) ≤ ε0, (1.9)
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then there exists a continuous solution � of (1.1)–(1.2) with
∫

R\Z
f dx = 0, and there exists

a constant C0 > 0 such that we have the following error estimate for any discrete solution
X of (1.4)–(1.5)–(1.6)

|Xk+1 − Xk − �′(kε)| ≤ C0ε
p−1
p+3 ∀ε ∈ (0, ε0).

Hence, when considering small perturbations of a stable perfect lattice, the deformed lat-
tice still satisfies the Cauchy–Born rule with a good approximation (see for instance [16, 36]
for interesting related works). Remark that the second inequality of (1.9) follows from the
last one and from the periodicity condition (1.5).

The proof of Theorem 1 is based on a new “Harnack-type” estimate, see Theorem 2,
which is the core of our method. It would be natural and very interesting to generalize this
result for m-dimensional lattices, with m > 1, under appropriate assumptions on the two-
body potential, but this is still an open question.

Remark 1 With our method, it is also possible to get estimates in the case of potentials with
exponential decay at infinity, with a sharp estimate of the error.

Remark 2 In Theorem 1, we do not assume the uniqueness of the solution X to (1.4)–(1.5)–
(1.6), but only its existence.

1.4 A Brief Review of the Literature

Related to our study is the fundamental question of the periodic or non-periodic nature of
an array of atoms interacting through two-body interactions, when minimizing its energy.
In dimension 1, this question has been addressed in [17] for Lennard-Jones potentials. It
has been proved that the ground state is unique and approaches uniform spacing in the
thermodynamical limit. This has also been done in one dimension for other potentials in
[23, 25] and generalized to two dimensions for very special potentials in [18, 22], and in
[30] for general potentials including Lennard-Jones potentials. See the review paper [24]. In
[33–35], the authors show that the periodic configuration has the minimal energy per particle
for some potentials which are more general than the Lennard-Jones potential; they actually
give a necessary condition on the Fourier transform of the potential so that the property is
true, and some counter-examples for particular potentials when the condition is not satisfied.

In [1, 31], continuum mechanics models are derived for systems with two-body poten-
tials, assuming that the macroscopic displacement is equal to the microscopic one, that is
when the Cauchy-Born rule applies. In [6], similar results are obtained up to higher order
correction terms (and for other molecular models as well). Also see [15]. The problem of
identifying the macroscopic equivalent of a microscopic state, and the conditions which
allow to do that, are very close to the spirit of the Quasi–Continum Method (QCM), as pre-
sented in [26–29]. A particular model with first nearest neighbors interactions is for instance
studied in [4, 5]. Also see [2, 11, 12, 19] for studies on the dynamics. In a stronger regularity
framework, E and Ming have recently shown in [13] that there is a unique local minimizer
which satisfies the Cauchy-Born rule using energy estimates. See references therein for a list
of papers in this direction and especially [14]. Results based on �-convergence have been
achieved in [7, 9]. For works in the regime of fracture (where the Cauchy-Born rule fails),
we refer the reader for instance to [8, 10, 32].

In the present paper, we prove that the Cauchy-Born rule applies and give a uniform error
estimate, hence proving that the macroscopic displacement is equal to the microscopic one
up to first order.
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1.5 Organization of the Paper

In Sect. 2, we prove a key “Harnack-type” estimate. Section 3 is independent of the rest
of the paper and devoted to an extended “Harnack-type” estimate which gives a boundary
layer estimate. In Sect. 4, we prove our main result, Theorem 1. In Sect. 5, we show some
general properties of the potentials, which will be used in Sect. 6 to state some sufficient
conditions such that the microscopic invertibility Assumption (A3) is satisfied by Lennard-
Jones potentials, for a chain of atoms under compression.

2 A “Harnack-Type” Estimate

We shall say that a subset K ⊂ Z of indices is a box, or a discrete interval, if and only if
it is the intersection of Z with an interval. For such a box K , let us define the semi-norm
(inspired by [20, 21], also see [3])

NK(X) := sup
k∈K

inf
L∈Rd

Dk(X,L).

For a given ρ ∈ R\{0}, let us set

Kρ := K + Qρ,

where Qρ := {e ∈ Z, such that |e| ≤ ρ}. Then we have the following generalization of
Harnack-type estimates to discrete equations.

Theorem 2 (“Harnack-type” estimate) Under Assumptions (A1)–(A3), there exists δ0 > 0,
μ ∈ (0,1), C1, C2 > 0 such that, for every solution X of (1.4) satisfying

sup
k∈Z

Dk(X,L∗) ≤ δ0 (2.1)

and for any box K ⊂ Z, we have

NK(X) ≤ μNKρ (X) + C1 sup
k∈Kρ

|fk| (2.2)

with

ρp = C2

NK(X)
. (2.3)

Remark 3 In Theorem 2, we do not assume that (fk)k∈Z is uniformly bounded. Indeed in
the proof of the theorem, we only use the fact that fk is finite for each k ∈ Z.

Remark 4 Intuitively, the Euler–Lagrange equation satisfied by X in case fk = 0 for any
k ∈ Z can be thought of as an equation of the type

∂2X

∂x2
= 0 for any x ∈ R. (2.4)

More generally, if we take k ∈ Z
m with m > 1, the equation for X becomes a system, which

is similar to

�X = 0 for any x ∈ R
m.
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The set of harmonic polynomial solutions is much larger than the set of solutions of (2.4).
This is one of the difficulties that one would have to tackle for extending the results of this
paper to dimensions m > 1.

By applying Theorem 2 with K = Z, we get the following result.

Corollary 1 (Liouville result) Under Assumptions (A1)–(A3), there exists δ0 > 0 such that,
if X = (Xk)k∈Z is a solution of (1.4) with zero forces, i.e., fk = 0 for any k ∈ Z, and satisfies

sup
k∈Z

Dk(X,L∗) ≤ δ0,

then there exists L ∈ R
d such that

Xk = X0 + kL for any k ∈ Z.

Proof of Theorem 2 Let us assume that the estimate is false. By taking appropriate sequences
and passing to the limit, we are going to find a non perfect lattice Y such that B ∗ Y = 0, a
contradiction with (A3).

Step 1: Construction of sequences. Theorem 2 claims the existence of δ0 > 0,μ ∈
(0,1),C1,C2 > 0 such that for every X satisfying (2.1) and for any box K , then (2.2) holds
with the definition (2.3) of ρ and for (fk)k∈Z related to X by (1.4).

Assume by contradiction that the statement of Theorem 2 is false. This means that for
every δ0 > 0,μ ∈ (0,1),C1,C2 > 0, there exists X satisfying (1.4) with forces (fk)k∈Z

and (2.1), and there exists a box K such that (2.2) is false with the definition (2.3) of ρ.
Because we can choose δ0 > 0, μ ∈ (0,1), C1, C2 > 0 as we want, we can take sequences
(δn

0 )n∈N, (μn)n∈N, (Cn
1 )n∈N, (Cn

2 )n∈N, such that

⎧
⎨

⎩

δn
0 → 0,

μn → 1,

Cn
1 , Cn

2 → +∞,

and assume the existence of corresponding sequences (Xn)n∈N, (Kn)n∈N, (ρn)n∈N, (f n)n∈N

such that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

supk∈Z
Dk(X

n,L∗) ≤ δn
0 → 0,

(ρn)p = Cn
2

NKn (Xn)
→ +∞,

NKn(Xn) > μnNKn
ρn

(Xn) + Cn
1 supk∈Kn

ρn
|f n

k |,
Xn satisfies (1.4) with forces f n.

(2.5)

Then we set

εn := NKn(Xn),

which goes to zero because NKn(Xn) ≤ supk∈Z
Dk(X

n,L∗) ≤ δn
0 → 0.

When Kn is bounded, we can define kn ∈ Kn and Ln ∈ R
d such that

NKn(Xn) = inf
L∈Rd

Dkn(Xn,L) = Dkn(Xn,Ln). (2.6)

If Kn is unbounded, it may happen that the infimum is not reached. In that case we
can choose an approximate minimizer kn and some associated Ln such that we still have



Harnack Inequalities and Discrete–Continuous Error Estimates 35

infL∈Rd Dkn(Xn,L) = Dkn(Xn,Ln) and moreover

NKn(Xn) − infL∈Rd Dkn(Xn,L)

εn
→ 0.

The proof can be easily adapted in that case. To simplify the presentation we will only do
the proof when (2.6) holds.

There exists en ∈ Q1\{0} = {±1} such that

|Xn
kn+en − Xn

kn − enLn| = εn.

On the other hand we have

|Xn
kn+en − Xn

kn − enL∗| ≤ δn
0 ,

from which we get

|Ln − L∗| ≤ εn + δn
0 . (2.7)

Let us define

Y n
k := Xn

kn+k − Xn
kn − kLn

εn

and observe that, with e = ±1,

εn|Y n
k+e − Y n

k − eL| = |Xn
kn+k+e − Xn

kn+k − eL|,

Dk(Y
n,L) = 1

εn
Dk+kn (Xn,L).

Hence we obtain

1

μn
≥ sup

k∈Kn
ρn −kn

inf
L∈Rd

Dk(Y
n,L) ≥ 1 = inf

L∈Rd
D0(Y

n,L) and Y n
0 = 0. (2.8)

We will get some a priori bounds on the Y n
k . To this end, we first need to control the variations

of the lattice spacing.
Step 2: Control on the variations of the lattice spacing. We choose L

n

k ∈ R
d such that for

k ∈ Kn
ρn − kn we have

inf
L∈Rd

Dk(Y
n,L) = Dk(Y

n,L
n

k).

In particular, we can take L
n

0 = 0. By definition of L
n

k , we deduce that

|Y n
k+1 − Y n

k − L
n

k | ≤ Dk(Y
n,L

n

k) and |Y n
k − Y n

k+1 + L
n

k+1| ≤ Dk+1(Y
n,L

n

k+1).

Therefore, if k, k + 1 ∈ Kn
ρn − kn, we get

|Ln

k − L
n

k+1| ≤ Dk(Y
n,L

n

k) + Dk+1(Y
n,L

n

k+1) ≤ 2

μn

and then, if k, k′ ∈ Kn
ρn − kn, we deduce the following estimate

|Ln

k − L
n

k′ | ≤ 2
|k − k′|

μn
. (2.9)
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Similarly, from the fact that

max
(|Y n

k+1 − Y n
k − L

n

k |, |Y n
k−1 − Y n

k + L
n

k |
) ≤ Dk(Y

n,L
n

k) ≤ 1

μn
, (2.10)

we deduce that

|Y n
k+1 + Y n

k−1 − 2Y n
k | ≤ 2

μn
for every k ∈ Kn

ρn − kn. (2.11)

Step 3: Quadratic bound on Y n
k . Assume that k ∈ Kn

ρn − kn and let us assume to simplify
that k > 0 (the other case k < 0 is similar). Then we have

|Y n
j+1 − Y n

j − L
n

j | ≤ Dj(Y
n,L

n

j ) ≤ 1

μn
.

Using the fact that L
n

0 = 0, we get

|Y n
k | =

∣∣∣∣∣

k−1∑

j=0

{
Y n

j+1 − Y n
j − L

n

j − (L
n

0 − L
n

j )
}
∣∣∣∣∣

≤
k−1∑

j=0

{
Dj(Y

n,L
n

j ) + ∣∣Ln

j − L
n

0

∣∣}

≤ k

μn
+ 2

μn

k−1∑

j=0

j

≤ k2

μn

and from Qρn ⊂ Kn
ρn − kn, we deduce that

|Y n
k | ≤ k2

μn
for all k ∈ Qρn. (2.12)

Step 4: Passing to the limit and getting a contradiction. Let us define

gn
k := f n

kn+k

εn
∀k ∈ Kn

ρn − kn.

Then gn
k satisfies

|gn
k | ≤

1

Cn
1

→ 0 as n → +∞ (2.13)

because of (2.5). From (1.4) we deduce for all j ∈ Z

εngn
j +

∑

k∈Z\{j }
∇V

(
(j − k)Ln + εn(Y n

j − Y n
k )

) = 0,

i.e.,

gn
j +

∑

k∈Z\{j }

∫ 1

0
dt (Y n

j − Y n
k ) · Bn

jk(t) = 0, (2.14)
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with

Bn
jk(t) = D2V

(
(j − k)Ln + tεn(Y n

j − Y n
k )

)
.

Up to extraction of convergent subsequences, by (2.6), (2.12) and (2.13), we can assume
that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Y n
k → Y ∞

k ,

gn
k → 0,

Ln → L∗,
Bn

jk(t) → B∞
jk = D2V

(
L∗(j − k)

) = H ∗
j−k.

Passing to the limit in (2.8) and (2.11), we get in particular

inf
L∈Rd

D0(Y
∞,L) = 1 (2.15)

and

|Y ∞
k+1 + Y ∞

k−1 − 2Y ∞
k | ≤ 2 for every k ∈ Z. (2.16)

We now want to pass to the limit in (2.14). To this end, we will estimate for any fixed
j ∈ Qρn/2 separately

Sn
j =

∑

k∈(j+Qρn/2)\{j }

∫ 1

0
dt (Y n

j − Y n
k ) · Bn

jk(t)

and

Fn
j =

∑

k∈Z\(j+Qρn/2)

∫ 1

0
dt (Y n

j − Y n
k ) · Bn

jk(t)

with S for the “short” distance contribution and F for the “far” away contribution.
For the short distances contribution, using (2.9)–(2.10), we get

|Y n
j − Y n

k | ≤ C3(1 + |j − k|2) for every k ∈ j + Qρn/2 (2.17)

with some constant C3 = C3(j) > 0. For the far away contribution, we have

|Y n
j − Y n

k | = 1

εn

∣∣Xn
kn+j − Xn

kn+k − Ln(j − k)
∣∣ ≤ C4

|j − k|
εn

(2.18)

for some constant C4 > 0, where we have used the fact that

sup
k∈Z

Dk(X
n,L∗) ≤ δn

0 with δn
0 small enough. (2.19)

We claim that there exists a constant C5 > 0 such that for n large enough, we have

|Bn
jk(t)| ≤

C5

(1 + |j − k|)p+2
for all j, k ∈ Z. (2.20)

This will be proven in Step 5. On the one hand, from (2.20), (2.17) and the dominated
convergence theorem, we deduce that

Sn
j → S∞

j = (B∞ · Y ∞)j .
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On the other hand, from (2.20), (2.18) and

εn (ρn)p = Cn
2 → +∞, (2.21)

we deduce that there exists a constant C6 > 0 such that

|Fn
j | ≤ C6

εn (ρn)p
= C6

Cn
2

→ 0.

Therefore, we can pass to the limit in (2.14), and get that S∞
j = 0 for any j ∈ Z, i.e.,

B∞ ∗ Y ∞ = 0.

Applying Assumption (A3) with estimate (2.16), we deduce that there exists L ∈ R
d such

that

Y ∞
k = Y ∞

0 + kL,

which gives a contradiction with (2.15).
Step 5: Proof of (2.20). We can write

Bn
jk(t) = D2V

(
Zn

j (t) − Zn
k (t)

)
with Zn

k (t) := (1 − t)kLn + tXn
kn+k.

We observe that

Zn
j (t) − Zn

k (t) − (j − k)L∗

= (1 − t)(j − k)(Ln − L∗) + t

j−1∑

l=k

(
Xn

kn+l+1 − Xn
kn+l − L∗) .

Since t ∈ [0,1], from (2.7) and (2.19) we deduce that

|Zn
j (t) − Zn

k (t)| ≥ |j − k|(|L∗| − (εn + δn
0 )

)
for every j, k ∈ Z.

Finally Assumption (A1) on the decay at infinity on the potential V implies (2.20). This
ends the proof of Theorem 2. �

Remark 5 As can be checked from the proof, Theorem 2 is still true with ρ chosen such that

ρp = C2

NKρ (X)
.

The proof is similar to the one of Theorem 2, if ρn in (2.5) and relation (2.21) are replaced
respectively by

(ρn)p = Cn
2

NKn
ρn

(Xn)
→ +∞

and

εn (ρn)p > μnCn
2 → +∞.
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3 A Boundary Layer Estimate

In this section, we will give a boundary layer estimate. To this end, one has to consider
continuous extensions of the discrete norms and the corresponding Harnack-type estimate.

Let I be any interval and K = I ∩ Z. Recall that for any j ∈ N, we set

Kj = K + Qj with Qj = {−j,−j + 1, . . . , j} .

We extend the definitions given for integers to real numbers. Let

ÑIr (X) := (1 − α)NKk
(X) + αNKk+1(X)

for any r = k + α, k ∈ N, α ∈ [0,1), and

‖f ‖L∞(Ir ) = (1 − α) sup
j∈Kk

|fj | + α sup
j∈Kk+1

|fj |.

Reciprocally, remark that if K = {k−, k+}, then it is natural to set I = [k−, k+] and define

Ir := [k− − r, k+ + r]. (3.1)

As a consequence, we have the counterpart of Theorem 2 (same proof).

Theorem 3 (Extended “Harnack-type” estimate) Under Assumptions (A1)–(A3), there ex-
ists δ0 > 0, μ ∈ (0,1), C1, C2 > 0 such that for every solution X of (1.4) satisfying

sup
k∈Z

Dk(X,L∗) ≤ δ0,

we have, for any interval I and any r ∈ [0,+∞),

ÑIr (X) ≤ μÑIr+ρ (X) + C1‖f ‖L∞(Ir+ρ )

with

ρp = C2

ÑIr+ρ (X)
. (3.2)

Remark 6 Theorem 3 is still true with the following choice of ρ:

ρp = C2

ÑIr (X)
.

An interesting corollary of this extended estimate is the following boundary layer esti-
mate which gives a decay rate for the perturbation of a perfect chain of atoms.

Corollary 2 (Discrete boundary layer estimate) Under Assumptions (A1)–(A3), there exist
constants δ0 > 0 and C0 > 0, such that, if X = (Xk)k∈Z satisfies

sup
k∈Z

Dk(X,L∗) ≤ δ0 (3.3)

and is a solution of (1.4) with forces satisfying

fk = 0 for any k ∈ N,
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then there exists L ∈ R
d and C0 = C0(μ,C2,p) > 0 such that

Dk(X,L) ≤ C0k
−(p−1) for any k ∈ N.

Proof For any k ∈ N, let us define

Nk := {j ∈ N : j ≥ k}.
For any nonnegative real r = k + β with k ∈ N, β ∈ (0,1], we have

Ñ[r,+∞)(X) = (1 − β)NNk
(X) + βNNk+1(X),

where we use the fact that [r,+∞) = [k + 1,+∞)1−β . By definition, the map r �→
Ñ[r,+∞)(X) is non-increasing. Consider the sequences (Mk)k∈N and (rk)k∈N such that

M0 := Ñ[0,+∞)(X) = NN(X) and r0 := 0,

Mk+1 := μMk and rk+1 := inf
{
r ≥ 0 : Ñ[r,+∞)(X) ≤ Mk+1

}

with μ ∈ (0,1) defined in Theorem 3. We observe that Ñ[rk ,+∞)(X) = Mk . We have nothing
to prove if M0 = 0, so we shall assume that M0 > 0.

Step 1: The sequences are well–defined for any k. We only have to show that

Ñ[r,+∞)(X) → 0 as r → +∞. (3.4)

If (3.4) was not true, then there would exist δ1 > 0 and a sequence of integers kn → +∞
such that

inf
L∈Rd

Dkn(X,L) ≥ δ1 > 0.

Let us define Xn by Xn
k := Xk+kn − Xkn . Because of (3.3), we can extract a subsequence

which converges to a limit X∞ which satisfies (1.4) with zero forces and

inf
L∈Rd

D0(X
∞,L) ≥ δ1 > 0.

Applying Corollary 1 to X∞, we get a contradiction. This proves (3.4).

Step 2: We have Ñ[r,+∞)(X) ≤ C̃2
rp for some constant C̃2 = C̃2(μ,C2,p) > 0. We consider

the extended “Harnack-type” estimate of Theorem 3 with the choice (3.2). Let Ir = [r,+∞)

and (Ir )ρ = Ir−ρ = [r − ρ,+∞) with the notation (3.1). With ρ = ρk and r = rk + ρk , we
have

rk+1 − rk ≤ ρk with ρ
p

k = C2

Mk

.

By definition of Mk , we have

ρk =
(

C2

Mk

) 1
p

= γ k

(
C2

M0

) 1
p

with γ = μ
− 1

p

and then

0 ≤ rk ≤
(

C2

M0

) 1
p

k−1∑

i=0

γ i ≤ C̃0γ
k with C̃0 = 1

γ − 1

(
C2

M0

) 1
p

,
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so that

Ñ[rk ,+∞)(X) = Mk = μkM0 ≤ M0

(
C̃0

rk

)p

.

Let us define the map h : [0,+∞) → [0,+∞) by

h(r) := Ñ[r,+∞)(X).

The function h is non-increasing and satisfies

h(rk) = μkM0 ≤ C̃1

r
p

k

with C̃1 = M0C̃
p

0 = C2

(γ − 1)p
.

If r ∈ (rk, rk+1), then we have

h(r) ≤ h(rk) = h(rk+1)

μ
≤ 1

μ

C̃1

r
p

k+1

≤ C̃2

rp
with C̃2 = C̃1

μ
.

This proves that Ñ[r,+∞)(X) ≤ C̃2/rp for any r ≥ 0.
Step 3: Conclusion. For each k ∈ N, let us choose Lk ∈ R

d such that

Dk(X,Lk) = inf
L∈Rd

Dk(X,L).

From Step 2, we have

Dk(X,Lk) ≤ C̃2

kp
.

As in Step 2 of the proof of Theorem 2, we have

|Lk+1 − Lk| ≤ Dk(X,Lk) + Dk+1(X,Lk+1) ≤ 2
C̃2

kp
.

Because p > 1, we see that the sequence (Lk)k∈N converges to some limit L = limk→+∞ Lk

such that

|L − Lk| ≤ 2C̃2

∑

j≥k

1

jp
.

Using the fact that Dk(X,L) ≤ Dk(X,Lk) + |L − Lk|, we get

Dk(X,L) ≤ 2C̃2

(
3

2kp
+

∑

j≥k+1

1

jp

)
≤ 2C̃2

(
3

2kp
+ 1

(p − 1)

1

kp−1

)
≤ C0

kp−1
,

with C0 := 2C̃2(
3
2 + 1

p−1 ). �

4 Proof of Theorem 1

Step 1: A priori estimate. We apply the “Harnack-type” estimate of Theorem 2 with K = Z

and get

NZ(X) ≤ C1

1 − μ
sup
k∈Z

|fk| ≤ C7ε (4.1)
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for some constant C7 > 0, where we have used the relation (1.6) and the L∞ bound on the
force f (x). Let us define

Lk := Xk+1 − Xk.

There exists L̃k ∈ R
d such that

max
(|Xk+1 − Xk − L̃k|, |Xk−1 − Xk + L̃k|

) ≤ Dk(X, L̃k) = inf
L∈Rd

Dk(X,L).

This implies that

|Lk+1 − Lk| ≤ 2NZ(X).

As a consequence, for any ρ ≥ 1 we have

sup
k∈Qρ

Dk(X,L0) ≤ (1 + 2ρ)NZ(X),

and for any k ∈ Qρ ,

|Xk − X0 − kL0| ≤ ρ(1 + 2ρ)NZ(X).

Therefore, and more generally for any i ∈ Z, we get, for any ρ ≥ 1,

|Xk − Xj − (k − j)Li | ≤ C8ερ
2 for any j, k ∈ i + Qρ, (4.2)

for some constant C8 > 0.

Step 2: The line tension formulation. Let us define the line tension of the chain by

Ti :=
∑

j,k≥0

∇V (Xi+1+j − Xi−k).

Using the fact that ∇V (−L) = −∇V (L), we can easily check that

Ti − Ti−1 = −
∑

k∈Z\{i}
∇V (Xi − Xk). (4.3)

By (1.4), this means Ti − Ti−1 = fi and thus

Ti = T0 +
i∑

j=1

fj ∀i ≥ 1. (4.4)

Step 3: Error estimate on the line tension. As in Step 4 of the proof of Theorem 2, we can
split the term Ti in a “short distance” contribution

Si =
∑

(j,k)∈�ρ

∇V (Xi+1+j − Xi−k),

with

�ρ = {
(j, k) ∈ N

2 : k ≤ ρ and j ≤ ρ − 1
}
,
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and a “far away” contribution

Fi =
∑

(j,k)∈N2\�ρ

∇V (Xi+1+j − Xi−k).

We deduce from Assumption (A1) that there exists a positive constant C9 such that

|Fi | ≤ C9ρ
−(p−1), (4.5)

and similarly
∣∣∣∣∣

∑

(j,k)∈N2\�ρ

∇V
(
(1 + j + k)Li

)
∣∣∣∣∣ ≤ C9ρ

−(p−1). (4.6)

On the other hand, we have

∣∣∣∣∣Si −
∑

(j,k)∈�ρ

∇V
(
(1 + j + k)Li

)
∣∣∣∣∣ ≤ C10

∑

(j,k)∈�ρ

|Xi+1+j − Xi−k − (1 + j + k)Li |,

for some constant C10 which bounds the second derivatives of the potential V (L) for |L| ≥
|L∗| − δ0. Using (4.2), (4.3), (4.5) and (4.6), this implies that

∣∣∣∣∣Ti −
∑

j,k≥0

∇V
(
(1 + j + k)Li

)
∣∣∣∣∣ ≤ C11

(
ερ4 + ρ−(p−1)

)

for some constant C11 > 0. With the choice ερp+3 = 1, which is optimal up to a numerical

constant, the right hand side becomes 2C11ε
p−1
p+3 and we get

|Ti − ∇W(Li)| ≤ C12ε
p−1
p+3 (4.7)

for some constant C12 > 0.

Step 4: Existence of the solution �. Let us recall the continuous Euler–Lagrange equa-
tion (1.2), namely

(∇W(�′)
)′ = f on R. (4.8)

For a proof of the existence of such a solution �, we refer for instance the reader to [13].
For the sake of completeness, we give a proof below.

Without loss of generality, we can moreover assume that

�(0) = 0.

Then let us define

V1 := {
� ∈ W 2,∞(R;R

d) : �(x + 1) − �(x) = L0 and �(0) = 0
}
,

V2 :=
{
f ∈ L∞(R;R

d) : f (x + 1) = f (x) and
∫

R/Z

f = 0

}
,
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and consider the map


 : V1 −→ V2,

� �−→ (∇W(�′)
)′
.

Let us remark that 
 is C1. Moreover, because of Assumption (A2), we know that A =
D2W(L∗) is invertible, and then D2W(L0) is also invertible for |L0 − L∗| ≤ ε0 with ε0

small enough. It is easy to check that D
(�0) is invertible for �0(x) = xL0. From the
Inverse Function Theorem, we deduce that there exists ε0 small enough such that for any
f ∈ V2 satisfying ‖f ‖L∞(R) ≤ ε0, there exists a unique solution � ∈ V1 solution of (4.8),
with � in a neighborhood of �0 in V1.

Step 5: Conclusion. From (4.8), we see that there exists a constant σ0 ∈ R
d such that

∇W(�′(x)) = σ0 +
∫ x

0
f (y)dy.

From (1.6), (4.4) and (4.7), we deduce that

∣∣∣∣T0 +
∫ (i+ 1

2 )ε

ε
2

f (y)dy − ∇W(Li)

∣∣∣∣ ≤ C12ε
p−1
p+3 . (4.9)

Let us introduce an approximation of � by setting

�̃′(x) := (1 − t)Li + tLi+1

with t = (x − iε)/ε if iε ≤ x ≤ (i + 1)ε. Recall that |Li+1 − Li | ≤ 2C7ε by (4.1). Now,
using the L∞ bound on the force f , we deduce from (4.9) that

∣∣∣�0 + ∇W(�′(x)) − ∇W(�̃′(x))

∣∣∣ ≤ C13ε
p−1
p+3 (4.10)

with �0 = T0 − σ0. On the other hand, because of the Nε-periodicity of the Li , we have

∫ 1

0
�̃′(x) dx = ε

Nε−1∑

i=0

(
Li + 1

2
(Li+1 − Li)

)

= ε

2

Nε−1∑

i=0

(Li+1 + Li) = L0,

where we have used the fact that Li = Xi+1 − Xi and (1.5). By (1.1), we have therefore

∫ 1

0
�̃′(x) dx =

∫ 1

0
�′(x) dx. (4.11)

Our goal is to use (4.11) to control �0 in (4.10). To this end, we consider the Taylor expan-
sion

∇W(�̃′) = ∇W(�′) + D2W(�′) · (�̃′ − �′) + O
(|�̃′ − �′|2).
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Taking into account the invertibility of D2W(�′), which follows from Assumption (A2) and
the construction of Step 4, we deduce that

∣∣∣�̃′(x) − �′(x) − (
D2W(�′(x))

)−1
(�0)

∣∣∣ ≤ C14ε
p−1
p+3 + O

(|�̃′(x) − �′(x)|2) (4.12)

and, as a consequence,

∣∣∣�̃′(x) − �′(x) − (
D2W(L0)

)−1
(�0)

∣∣∣

≤ C15

(
ε

p−1
p+3 + ‖�̃′ − �′‖2

L∞(R) + |�0|‖�′ − L0‖L∞(R)

)
.

Now integrating on the interval (0,1) and using (4.11), we get that

∣∣∣
(
D2W(L0)

)−1
(�0)

∣∣∣ ≤ C15

(
ε

p−1
p+3 + ‖�̃′ − �′‖2

L∞(R) + |�0|‖�′ − L0‖L∞(R)

)

and then

|�0| ≤ C16

(
ε

p−1
p+3 + ‖�̃′ − �′‖2

L∞(R)

)
.

Hence (4.12) implies

‖�̃′ − �′‖L∞(R) ≤ C17ε
p−1
p+3 ,

where we have used the fact that ‖�̃′ − �′‖L∞(R) is small because �′ and �̃′ are both close
to L0. For any i ∈ Z, we have

|Li − �′(iε)| ≤ C17ε
p−1
p+3 ,

which gives the result with Li = Xi+1 − Xi . This ends the proof of the theorem.

Remark 7 With suitable assumptions, we could also consider the equilibrium of a ring with
a large number of atoms instead of a chain of aligned atoms with “linear + periodic” condi-
tions.

5 Further General Results on the Potentials

Inspired by the line tension argument of Step 2 of the proof of Theorem 1, let us state first a
general result.

Proposition 1 (Sufficient conditions for Assumption (A3)) Let

Pj :=
∑

k≥1

kD2V
(
(k + |j |)L∗).

If we decompose Pj into P 1
j and P 2

j such that

Pj = P 1
j

L∗

|L∗| ⊗ L∗

|L∗| + P 2
j

(
Id − L∗

|L∗| ⊗ L∗

|L∗|
)
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and if
⎧
⎪⎪⎨

⎪⎪⎩

P 1
j ≤ 0 for any j ∈ Z\ {0} and

∑

j∈Z

P 1
j > 0,

−P 2
j ≤ 0 for any j ∈ Z\ {0} and

∑

j∈Z

−P 2
j > 0,

(5.1)

then Assumption (A3) is satisfied.

Proof For any Y satisfying |Yk+1 + Yk−1 − 2Yk| ≤ C, let us set

(P ∗ L)i =
∑

j∈Z

Pi−jLj with Lj = Yj+1 − Yj .

With Jl := Pl+1 − Pl , we get

(P ∗ L)i+1 − (P ∗ L)i =
∑

j∈Z

Ji−jLj = (J ∗ L)i,

where

Jl =
∑

m≥1

m
{
D2V

(
(m + |l + 1|)L∗) − D2V

(
(m + |l|)L∗)}

=
{−∑

h≥l+1 D2V (hL∗), if l ≥ 0,
∑

h≥|l+1|+1 D2V (hL∗), if l ≤ −1.

Hence, with the notations introduced in (1.7)–(1.8) and using D2V (−hL∗) = D2V (hL∗)
for any h ≥ 0, we get

(J ∗ L)i =
∑

j∈Z

Yj

(−Ji−j + Ji−j+1
) = −

∑

j∈Z

YjBi−j+1 = −(B ∗ Y )i−1 = 0.

Consequently, if we assume that B ∗Y = 0, then 0 = (J ∗L)i = (P ∗L)i+1 − (P ∗L)i means
that

(P ∗ L)i = (P ∗ L)0 for any i ∈ Z,

and then Gk = Lk+1 − Lk satisfies

P ∗ G = 0.

We can project this equality along L∗
|L∗| or ( L∗

|L∗| )
⊥, and get

P 1 ∗ G1 = 0 with G1
k = L∗

|L∗| · Gk,

P 2 ∗ G2 = 0 with G2
k =

(
Id − L∗

|L∗| ⊗ L∗

|L∗|
)

· Gk ∈
(

L∗

|L∗|
)⊥

.

(5.2)

Consider the maximum of (G1
k)k∈Z. If it is achieved at some k1, we get from (5.2) that

P 1
0 G1

k1 = −
∑

k∈Z\{0}
P 1

k G1
k1−k

≤ −
( ∑

k∈Z\{0}
P 1

k

)
G1

k1 .
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Then (5.1) implies

sup
k∈Z

G1
k ≤ 0.

When the suppremum is reached at infinity, it is possible (up to translations at infinity) to
see that the result is still true. Similarly, we get that

inf
k∈Z

G1
k ≥ 0,

and then

G1 = 0.

Now for any constant vector ξ ∈ (L∗)⊥, let us set Gξ = ξ · G2. Then we have

P 2 ∗ Gξ = 0,

which, as above, implies Gξ = 0. Because this is true for any ξ ∈ (L∗)⊥, this implies that

G2 = 0.

Finally this gives that G = 0 and then

Lk = L0 for any k ∈ Z,

which proves that (Yk)k∈Z is a perfect chain. �

From (1.8), we have

H ∗
k = V ′′

0 (|kL∗|) L∗

|L∗| ⊗ L∗

|L∗| + V ′
0(|kL∗|)
|kL∗|

(
Id − L∗

|L∗| ⊗ L∗

|L∗|
)

,

and by definition of P 1
j and P 2

j (see Proposition 1), we obtain

P 1
j (r) =

∑

k≥1

kV ′′
0

(
(k + |j |)r) and P 2

j (r) =
∑

k≥1

k
V ′

0((k + |j |)r)
(k + |j |)r .

In Sect. 6 and under some assumptions on the potentials and on the range of r , we will check
that the operators P 1 and P 2 satisfy assumption (5.1).

Lemma 1 With the notations of Proposition 1,

∑

j∈Z

P 1
j (r) = W ′′

0 (r) and r
∑

j∈Z

P 2
j (r) = W ′

0(r).

Proof The result relies on the following computation.

∑

j∈Z

P 1
j (r) =

∑

j∈Z

∑

k≥1

kV ′′
0

(
(k + |j |)r)

=
∑

k≥1

kV ′′
0 (kr) + 2

∑

j≥1

∑

k≥1

kV ′′
0

(
(k + j)r

)
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=
∑

h≥1

h2V ′′
0 (hr) = W ′′

0 (r).

The result for P 2(r) follows from a similar computation which gives

∑

j∈Z

P 2
j (r) =

∑

h≥1

h2 V ′
0(hr)

hr
= 1

r

∑

h≥1

hV ′
0(hr) = 1

r
W ′

0(r).
�

6 Applications to Lennard-Jones Type Potentials

Let us now consider potentials of Lennard-Jones type, i.e., for r > 0

V0(r) = r−q − r−p with 1 < p < q

and

W0(r) = sqr
−q − spr−p with sq =

∑

k∈N\{0}
|k|−q = ζ(q) < sp = ζ(p),

where ζ denotes the Riemann Zeta function. Then we define r1, r2, r1, r2 > 0 such that

0 = V ′
0(r1) = V ′′

0 (r2) = W ′
0(r1) = W ′′

0 (r2)

and find

r1 :=
(

q

p

) 1
q−p

and r2 :=
(

q(q + 1)

p(p + 1)

) 1
q−p

> r1,

r1 :=
(

sqq

spp

) 1
q−p

< r1 and r2 :=
(

sqq(q + 1)

spp(p + 1)

) 1
q−p

∈ (r1, r2).

Lemma 2 (Sufficient conditions for Lennard-Jones type potentials)

(i) The operator P 1(r) satisfies assumption (5.1) if r ∈ (r2/2, r2), which is possible if

(
sq

sp

) 1
q−p

>
1

2
. (6.1)

(ii) The operator P 2(r) satisfies assumption (5.1) if r ∈ (r1/2, r1), which is possible if (6.1)
is satisfied.

(iii) P 1(r) and P 2(r) satisfy assumption (5.1) simultaneously if r ∈ (r2/2, r1) which is pos-
sible if

(
sq

sp

) 1
q−p

>
1

2

(
q + 1

p + 1

) 1
q−p

. (6.2)

Proof If r ≥ r2/2, then P 1
j (r) < 0 if j 	= 0. Similarly, if r ≥ r1/2, then P 2

j (r) > 0 if j 	= 0.
The result follows from Lemma 1. �

Lemma 2 is illustrated by Figs. 1 and 2. Conditions (6.1) and (6.2) could easily be im-
proved, for instance by refining the estimates for which P 1

j ≤ 0 and −P 2
j ≤ 0.
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Fig. 1 Van der Waals forces:
plot of V0 and W0 with p = 2.25
and q = 3.5. Condition (6.2) is
satisfied since r2/2 ≈ 0.923723
< r̄1 ≈ 1.15726

Fig. 2 Van der Waals forces:
regions for which conditions
(6.1) and (6.2) are satisfied. The
point P0 := (2.25,3.5)

corresponding to Fig. 1 is shown.
In the gray area, condition (5.1)
is satisfied by P 1(r) and P 2(r)

A straightforward consequence of Lemma 2 and Proposition 1 is the following result of
stability under compression. This is the main result of this section.

Corollary 3 (Sufficient conditions for Lennard-Jones type potentials to have (A3))
If (6.2) is satisfied, then Assumption (A3) is satisfied if |L∗| ∈ (r2/2, r1). If moreover d = 1,
then Assumption (A3) is granted by assuming that |L∗| ∈ (r2/2, r2).

Remark 8 In dimension d ≥ 2, intuitively we expect stability of the chain of atoms when
we pull the chain in the range where W ′

0(r) > 0 and W ′′
0 (r) > 0. Nevertheless, we were not

able to prove it, because it is more difficult to check Assumption (A3) in such a case (but
this is true if d = 1 as a consequence of point (i) of Lemma 2).

On the contrary, in the case of compression of a straight chain, i.e., with W ′
0(r) < 0 and

W ′′
0 (r) > 0, one atom may decrease the total energy by moving far enough, perpendicularly

to the chain. Indeed the system is unstable (both at the microscopic and at the macroscopic
level). Corollary 3 and Theorem 1 show that the chain of atoms under compression is well
approximated at the microscopic level, if a suitable force is applied at the microscopic level
to avoid the atoms to move too far perpendicularly to the chain, i.e., if Dk(X,L∗) ≤ δ0 with
δ0 small enough.
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